PSI - Issue 42
Lucas Carneiro Araujo et al. / Procedia Structural Integrity 42 (2022) 163–171 Lucas Carneiro Araujo/ Structural Integrity Procedia 00 (2019) 000 – 000
170
8
All conditions e loads
25.25
43.46
23.22
38.46
6. Conclusion In this work, an alternative method of calibrating the multiaxial fatigue models of Findley and MWCM has been presented. The method aimed to consider the effect of small defects on the fatigue strength of AISI 4140 steel under uniaxial and combined proportional and non-proportional loading conditions. To adapt these classical critical plane criteria, we introduced the √ parameter into the modeling. Classical multiaxial fatigue models based on the critical plane approach can be successfully adapted to obtain the fatigue limits of the 4140 steel considering: i) only de presence of the non-metallic inclusion and ii) a micro hole machined on the specimen to simulate bigger defects. The material constants required to calibrate the MWCM and Findley’s crite ria were easily calculated without the need to run lengthy and expensive fatigue tests. The experimental data generated to test this approach produced average errors not higher than 26% for both analyzed models, as shown in Table 2. Acknowledgements The authors of this work would like to acknowledge the financial support provided by FAP-DF by means of contract 00193-00000891/2022-61. References [1] A.J. McEvily, Metal Failures: Mechanisms, Analysis, Prevention, Wiley, 2013. [2] M.H. Evans, An updated review: white etching cracks (WECs) and axial cracks in wind turbine gearbox bearings, Mater. Sci. Technol. (United Kingdom). 32 (2016). doi:10.1080/02670836.2015.1133022. [3] R. Doglione, D. Firrao, Structural collapse calculations of old pipelines, Int. J. Fatigue. 20 (1998). doi:10.1016/S0142-1123(97)00100-X. [4] U. Zerbst, C. Klinger, Material defects as cause for the fatigue failure of metallic components, Int. J. Fatigue. 127 (2019). [5] M. Fonte, M. de Freitas, Marine main engine crankshaft failure analysis: A case study, Eng. Fail. Anal. 16 (2009). doi:10.1016/j.engfailanal.2008.10.013. [6] M. Endo, I. Ishimoto, Effects of Phase Difference and Mean Stress on the Fatigue Strength of Small-Hole-Containing Specimens Subjected to Combined Load, J. Solid Mech. Mater. Eng. 1 (2007) 343 – 354. doi:10.1299/jmmp.1.343. [7] Y. Nadot, T. Billaudeau, Multiaxial fatigue limit criterion for defective materials, Eng. Fract. Mech. 73 (2006) 112 – 133. doi:10.1016/j.engfracmech.2005.06.005. [8] K. Yanase, M. Endo, Multiaxial high cycle fatigue threshold with small defects and cracks, Eng. Fract. Mech. 123 (2014) 182 – 196. [9] F.C. Castro, E.N. Mamiya, C. Bemfica, A critical plane model to multiaxial fatigue of metals containing small defects, Brasília - DF, 2019. [10] L.C. Araújo, P.V.S. Machado, M.V.S. Pereira, J.A. Araújo, An alternative approach to calibrate multiaxial fatigue models of steels with small defects, in: Procedia Struct. Integr., 2019: pp. 19 – 26. doi:10.1016/j.prostr.2019.12.004. [11] P.V.S. Machado, L.C. Araújo, M.V. Soares, L. Reis, J.A. Araújo, Multiaxial fatigue assessment of steels with non-metallic inclusions by means of adapted critical plane criteria, Theor. Appl. Fract. Mech. 108 (2020) 102585. doi:10.1016/j.tafmec.2020.102585. [12] S. Vantadori, C. Ronchei, D. Scorza, A. Zanichelli, L.C. Araújo, J.A. Araújo, Influence of non-metallic inclusions on the high cycle fatigue strength of steels, Int. J. Fatigue. 154 (2022). doi:10.1016/j.ijfatigue.2021.106553. [13] Y. Murakami, M. Endo, Quantitative evaluation of fatigue strength of metals containing various small defects or cracks, Eng. Fract. Mech. 17 (1983) 1 – 15. doi:10.1016/0013-7944(83)90018-8. [14] Y. Murakami, M. Endo, Effects of defects, inclusions and inhomogeneities on fatigue strength, Int. J. Fatigue. 16 (1994) 163 – 182. [15] Y. Murakami, Metal fatigue: Effects of small defects and nonmetallic inclusions, 2019. doi:10.1016/C2016-0-05272-5. [16] W.N. Findley, A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending., J. Eng. Ind. 81 (1959) 301 – 306. [17] L. Susmel, P. Lazzarin, A bi-parametric Wöhler curve for high cycle multiaxial fatigue assessment, Fatigue Fract. Eng. Mater. Struct. 25 (2002) 63 – 78. doi:10.1046/j.1460-2695.2002.00462.x. [18] L. Susmel, Multiaxial Notch Fatigue: From Nominal to Local Stress/Strain Quantities, 2009. doi:10.1533/9781845695835. [19] E.N. Mamiya, J.A. Araújo, F.C. Castro, Prismatic hull: A new measure of shear stress amplitude in multiaxial high cycle fatigue, Int. J. Fatigue. 31 (2009) 1144 – 1153. doi:10.1016/j.ijfatigue.2008.12.010. [20] J.A. Araújo, A.P. Dantas, F.C. Castro, E.N. Mamiya, J.L.A. Ferreira, On the characterization of the critical plane with a simple and fast alternative measure of the shear stress amplitude in multiaxial fatigue, Int. J. Fatigue. 33 (2011) 1092 – 1100. doi:10.1016/j.ijfatigue.2011.01.002. [21] Y. Murakami, T. Toriyama, E.M. Coudert, Instructions for a new method of inclusion rating and correlations with the fatigue limit, J. Test. Eval. 22 (1994) 318 – 326. doi:10.1520/jte11840j.
Made with FlippingBook - Online catalogs