PSI - Issue 42
Tereza Juhászová et al. / Procedia Structural Integrity 42 (2022) 1090–1097 Juhaszova/ Structural Integrity Procedia 00 (2019) 000–000
1097
8
References
Ansys® Academic Research Mechanical (2022) , Release 22.1 ASTM, 1991, Standard Test Method for Measurement of Fatigue Crack Growth Rates.ASTM Standard E647-91a (1991) Azouggagh, M. et al., 2017. Study of fatigue crack propagation in the austenitic stainless steel 304L. International Journal of Mechanical & Mechatronics Engineering, 17(5), pp.114-120. Baddoo, N.R., 2008. Stainless steel in construction: A review of research, applications, challenges and opportunities. Journal of Constructional Steel Research, 64(11), 1199–1206. Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings, 2005. Brussels: European Comittee for Standardization. Gardner, L., 2005. The use of stainless steel in structures. Progress in Structural Engineering and Materials, 7(2), pp.45-55. Available at: https://onlinelibrary.wiley.com/doi/10.1002/pse.190. Gedge, G., 2008. Structural uses of stainless steel — buildings and civil engineering. Journal of Constructional Steel Research, 64(11), pp.1194 1198. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0143974X08001478. Irwin, G.R., 1957. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. Journal of Applied Mechanics, 24(3), pp.361-364. Jambor, M. et al., 2021. Effect of Solution Annealing on Fatigue Crack Propagation in the AISI 304L TRIP Steel. Materials, 14(6). Available at: https://www.mdpi.com/1996-1944/14/6/1331.¨ Janas P., Krejsa M., Krejsa V., 2020, Refinement of probability of failure estimation in DOProC method, Proceedings of the 29th European Safety and Reliability Conference, ESREL 2019, 2149–2156 Kala Z., 2019, Probability based global sensitivity analysis of fatigue reliability of steel structures, IOP Conference Series: Materials Science and Engineering, 668 (1), art. no. 012015 Kala Z., 2021, New importance measures based on failure probability in global sensitivity analysis of reliability, Mathematics, 9 (19), no. 2425 Kala Z., Omishore A., Seitl S., Krejsa M., Kala J. 2019, Identification of variation coefficient of equivalent stress range of steel girders with cracks, International Journal of Mechanics, 13, 69 –78, Kala Z., Seitl S., Krejsa M., Omishore A., 2019, Reliability assessment of steel bridges based on experimental research, AIP Conference Proceedings, 2116, art. no. 120005 Kim, D. et al., 2006. Fatigue Characteristics of STS 304 Stainless Steel for LNG Storage Tank at Low Temperature. Transactions of the Korean Nuclear Society Autumn Meeting, pp.1CD-ROM. Klusák, J. et al., 2021. Comparison of high‐ and low‐frequency fatigue properties of structural steels S355J0 and S355J2. , 44(11), 3202–3213. Krejsa M., Brozovsky J., Lehner P., Seitl S., Kala Z. 2018, Stochastic analysis for short edge cracks under selected loads, AIP Conference Proceedings, 1978, art. no. 150006 Liu, Z. et al., 2022. Exploration on the fatigue behavior of low-temperature carburized 316L austenitic stainless steel at elevated temperature. Materials Science and Engineering: A, 850. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0921509322009480. Murakami, Y. (Ed.), 1987, Stress Intensity Factors Handbook.Pergamon Press, Oxford Paris, P. C.; Erdogan, F., 1963 A critical analysis of crack propagation laws. Journal of Basic Engineering. Paris, P., Gomez, M. & Anderson, W., 1961. A Racional Analytic Theory of Fatigue. The Trend in Engeneering, 13, 9–14. Seitl S., Miarka P., Malíková L., Krejsa M. 2017, Comparison of calibration functions for short edge cracks under selected loads, Key Engineering Materials, 754 KEM, 353–356 Seitl, S. et al., 2020. Comparison of fatigue crack propagation behaviour in two steel grades S235, S355 and a steel from old crane way. MATEC Web of Conferences, 310. Available at: https://www.matec-conferences.org/10.1051/matecconf/202031000034. Vibrophores, 2021. ZwickRoell [online]. [cit. 2021-12-29]. Availible at: https://www.zwickroell.com/products/dynamic-and-fatigue testingsystems/vibrophores/ Westergaard, H.M., 1939. Bearing Pressures and Cracks: Bearing Pressures Through a Slightly Waved Surface or Through a Nearly Flat Part of a Cylinder, and Related Problems of Cracks. Journal of Applied Mechanics, 6(2), pp.A49-A53. Available at: https://asmedigitalcollection.asme.org/appliedmechanics/article/6/2/A49/1101655/Bearing-Pressures-and-Cracks-Bearing-Pressures. Yawas, D.S., Aku, S.Y. & Aluko, S.O., 2014. Fatigue behavior of welded austenitic stainless steel in different environments. Results in Physics, 4, pp.127-134. Available at: https://linkinghub.elsevier.com/retrieve/pii/S2211379714000126.
Made with FlippingBook - Online catalogs