PSI - Issue 42

Margot Pinson et al. / Procedia Structural Integrity 42 (2022) 471–479 Margot Pinson / Structural Integrity Procedia 00 (2019) 000–000

478

8

Fe-8Al-1.1C steel. Moreover, the H-charged Fe-8Al-1.1C samples fracture at higher extension values than the H charged 100Cr6 samples, resulting in a much lower embrittlement index. Nevertheless, further optimization of the heat treatment of the lightweight Fe-8Al-1.1C material is necessary to avoid the formation of quench cracks and as such enhance the fracture behavior in air. Thus, the main lesson to be drawn from this work is that the industrial 100Cr6 bearing material has a very high susceptibility to HE and that there are lightweight alternatives that show very promising results concerning the resistance to HE, while maintaining the high hardness values required for bearing applications.

Acknowledgements

The authors are grateful for the following grants: senior postdoctoral fellowship of TD via the Research Foundation - Flanders (FWO - grant 12ZO420N) and the Special Research Fund (BOF) of UGent (grants BOF15/BAS/062 and BOF20/BAS/121 ) . Moreover, H. Springer wishes to acknowledge financial support through the Heisenberg Programm of the Deutsche Forschungsgemeinschaft.

References

Bhadeshia, H. K. D. H. (2012). Steels for bearings. Progress in Materials Science , 57 (2), 268–435. https://doi.org/10.1016/j.pmatsci.2011.06.002 Claeys, L., Cnockaert, V., Depover, T., De Graeve, I., & Verbeken, K. (2020). Critical assessment of the evaluation of thermal desorption spectroscopy data for duplex stainless steels: A combined experimental and numerical approach. Acta Materialia , 186 , 190–198. https://doi.org/10.1016/j.actamat.2019.12.055 Depover, T., Monbaliu, O., Wallaert, E., & Verbeken, K. (2015). Effect of Ti, Mo and Cr based precipitates on the hydrogen trapping and embrittlement of Fe-C-X Q&T alloys. International Journal of Hydrogen Energy , 40 (47), 16977–16984. https://doi.org/10.1016/j.ijhydene.2015.06.157 Depover, T., Pérez Escobar, D., Wallaert, E., Zermout, Z., & Verbeken, K. (2014). Effect of hydrogen charging on the mechanical properties of advanced high strength steels. International Journal of Hydrogen Energy , 39 (9), 4647–4656. Depover, T., & Verbeken, K. (2016). Hydrogen trapping and hydrogen induced mechanical degradation in lab cast Fe-C-Cr alloys. Materials Science and Engineering: A , 669 , 134–149. Depover, T., & Verbeken, K. (2018). The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-C-X alloys: An experimental proof of the HELP mechanism. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY , 43 (5), 3050–3061. Evans, M.-H. (2012). White structure flaking (WSF) in wind turbine gearbox bearings: Effects of “butterflies” and white etching cracks (WECs). Materials Science and Technology , 28 (1), 3–22. https://doi.org/10.1179/026708311X13135950699254 Evans, M.-H., Richardson, A. D., Wang, L., & Wood, R. J. K. (2013). Effect of hydrogen on butterfly and white etching crack (WEC) formation under rolling contact fatigue (RCF). Wear , 306 (1), 226–241. https://doi.org/10.1016/j.wear.2013.03.008 He, J. (n.d.). ASTM 52100 Bearing Steel | 100Cr6 | SUJ2 | EN31 . Retrieved June 22, 2022, from https://www.astmsteel.com/product/52100-bearing steel-aisi/ Li, Z.-X., Li, C.-S., Zhang, J., Li, B.-Z., & Pang, X.-D. (2016). Microstructure of Hot Rolled 1.0C-1.5Cr Bearing Steel and Subsequent Spheroidization Annealing. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science , 47A (7), 3607–3621. https://doi.org/10.1007/s11661-016-3425-7 Luzginova, N. V., Zhao, L., & Sietsma, J. (2008). The Cementite Spheroidization Process in High-Carbon Steels with Different Chromium Contents. Metallurgical and Materials Transactions A , 39 (3), 513–521. https://doi.org/10.1007/s11661-007-9403-3 Man Lee, S., & Young Lee, J. (1987). The effect of the interface character of TiC particles on hydrogen trapping in steel. Acta Metallurgica , 35 , 2695–2700. https://doi.org/10.1016/0001-6160(87)90268-9 Olden, V., Thaulow, C., & Johnsen, R. (2008). Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels. Materials & Design - MATER DESIGN , 29 , 1934–1948. Oriani, R. A. (1972). A mechanistic theory of hydrogen embrittlement of steels. Berichte Der Bunsengesellschaft Für Physikalische Chemie , 76 (8), 848–857. https://doi.org/10.1002/bbpc.19720760864 Pérez Escobar, D., Depover, T., Duprez, L., Verbeken, K., & Verhaege, M. (2012). Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel. Acta Materialia , 60 (6–7), 2593–2605. Pinson, M., Claeys, L., Springer, H., Bliznuk, V., Depover, T., & Verbeken, K. (2022). Investigation of the effect of carbon on the reversible hydrogen trapping behavior in lab-cast martensitic FeC steels. Materials Characterization , 184 , 111671. https://doi.org/10.1016/j.matchar.2021.111671 Pinson, M., Springer, H., Depover, T., & Verbeken, K. (2020). Qualification of the in-situ bending technique towards the evaluation of the hydrogen induced fracture mechanism of martensitic Fe–C steels. Materials Science and Engineering: A , 139754. https://doi.org/10.1016/j.msea.2020.139754 Pinson, M., Springer, H., Depover, T., & Verbeken, K. (2021). The effect of quench cracks and retained austenite on the hydrogen trapping capacity of high carbon martensitic steels. International Journal of Hydrogen Energy . https://doi.org/10.1016/j.ijhydene.2021.02.057 Schmuecker, S. M., Clouser, D., Kraus, T. J., & Leonard, B. M. (2017). Synthesis of metastable chromium carbide nanomaterials and their electrocatalytic activity for the hydrogen evolution reaction. Dalton Transactions , 46 (39), 13524–13530. https://doi.org/10.1039/C7DT01404J

Made with FlippingBook - Online catalogs