PSI - Issue 42

P. Ferro et al. / Procedia Structural Integrity 42 (2022) 259–269

268 10

P. Ferro et al. / Structural Integrity Procedia 00 (2022) 000 – 000

4. Conclusions The three-passes arc welding of IN625 was investigated by experiments and numerical simulation. Experiments provided information about the shape and size of fusion zone required for numerical model heat source calibration, in the frame of computational welding mechanics technique; X-ray diffraction measurements provided information about residual stresses, according to the Bragg’s law , that were used to validate the model. Main results can be summarized as follows: 1. the calibrated heat source reproduces the three fusion zones accurately; 2. numerical and experimental values of residual stresses are found in reasonable agreement; 3. the higher the number of welding passes the higher the residual stress; 4. the heat affected zone is characterized by the highest values of transversal residual stress. Ojo, O.A., Richards, N.L., Chaturvedi, M.C. 2004. Microstructural study of weld fusion zone of TIG welded IN 738LC nickel -based superalloy. Scripta Mater. 51 683-688. Andersson, J. 2018. In Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, E. Ott, X. Liu, J. Andersson, Z. Bi, K. Bockenstedt, I. Dempster, J. Groh, K. Heck, P. Jablonski, M. Kaplan, D. Nagahama, and C. Sudbrack, eds., Springer, Pitts- burgh, PA, USA, 899 – 916. Berry, T.F., Hughes, W.P. 1969. A study of the strain-age cracking characteristics in welded René 41 - Phase II. Weld. J. 48 505 – 513. Borsato, T., Ferro, P., Berto, F., Carollo, C. 2016. Mechanical and Fatigue Properties of Heavy Section Solution Strengthened Ferritic Ductile Iron Castings. Advanced Engineering Materials 18(12) 2070-2075. Chen, B.Q., Hashemzadeh, M., Guedes Soares, C., 2018. Validation of numerical simulations with X-ray diffraction measurements of residual stress in butt-welded steel plates. Ships Offshore Struct. 13, 273 – 282. Cieslak, M.J., Headley, T.J., Knorovsky, G.A., Romig, A.D., Kollie. T. 1990. A comparison of the solidification behavior of INCOLOY 909 and INCONEL 718. Metall Mater Trans A 21 479 – 488. Cieslak, M.J., Headley, T.J., Romig, A.D., Kollie, T. 1988. A melting and solidification study of alloy 625. Metall Mater Trans A 19 2319 – 2331. David, S.A., Vitek, J.M., Babu, S.S., Boatner, L.A., Reed, R.W. 1997. Welding of nickel base superalloy single crystals. Science and Technology of Welding and Joining 2(2) 79-88. deBarbadillo, J., Baker, B., and Xie, X. 2016. In Superalloys, M. Hardy, E. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman, and S. Tin, eds., Wiley, Hoboken, NJ, 217 – 226. DuPont, J.N., Lippold, J.C., Kiser, S.D. 2009. Welding Metallurgy and Weldability of Nickel-Base Alloys, Wiley, Hoboken, NJ. Ferro, P. 2012. Influence of phase transformations on the asymptotic residual stress distribution arising near a sharp V-notch tip. Modelling and Simulation in Materials Science and Engineering 20(8) 085003. Ferro, P., Berto, F. and Romanin, L. 2020. Understanding powder bed fusion additive manufacturing phenomena via numerical simulation. Frattura ed Integrità Strutturale, 14(53) 252-284. Ferro, P., Bonollo, F., Tiziani, A. 2005. Laser welding of copper-nickel alloys: A numerical and experimental analysis, Science and Technology of Welding and Joining 10(3) 299-310. Ferro, P., Bonollo, F., Tiziani, A. 2010. Methodologies and experimental validations of welding process numerical simulation. International Journal of Computational Materials Science and Surface Engineering 3 114-132. Ferro, P., Bonollo. F. 2019. Design for Recycling in a Critical Raw Materials Perspective. Recycling 4 44-55. Ferro, P., Bonollo. F., Cruz, S.A. 2020. Alloy Substitution in a Critical Raw Materials Perspective. Frattura ed Integrit à Strutturale 51 81-91. Ferro, P., Petrone, N., 2009. Asymptotic thermal and residual stress distributions due to transient thermal loads. Fatigue and Fracture of Engineering Materials and Structures 32(11) 936-948. Ferro, P., 2021. Is 2D numerical modelling of welding process able to capture the residual notch stress intensity factor values? Theoretical and Applied Fracture Mechanics 114,103006. Franklin, E., Savage, W.F. 1974. Stress relaxation and strain — age cracking in Ren é 41 weldments. Weld. J. 53 380 – 387. Goldak, J., Chakravarti, A., Bibby, M., 1984. A new finite element model for welding heat source. Metall. Trans. B 15B 299 – 305. Gorsse, S., Couzinié, J.-P., Miracle, D.B. 2018. From high-entropy alloys to complex concentrated alloys. Comptes Rendus Physique 19(8) 721 736. Hardy, M.C., Detrois, M., McDvitt E.T., et al. 2020. Solving Recent Challenges for Wrought Ni-Base Superalloys. Metallurgical and Transactions A, 51A 2626-2650. Henderson, M.B., Arrell, D., Heobel, M., Larsson, R., Marchanty, G. 2013. Nickel based superalloy welding practices for industrial gas turbine applications. Science and Technology of Welding and Joining 9 13-21. Jensen, M.V.R.S., Dye, D., James, K.E., Korsunsky, A.M., Roberts, S., Reed, R.C. 2002. Residual stresses in a welded superalloy disc: Characterization using synchrotron diffraction and numerical process modelling. Metall. Trans. A 33 2921-2931. References

Made with FlippingBook - Online catalogs