PSI - Issue 42

Litton Bhandari et al. / Procedia Structural Integrity 42 (2022) 529–536 Bhandari et al. / Structural Integrity Procedia 00 (2019) 000–000

536

8

Acknowledgement

The authors are thankful to Dr. Amit Bhattacharjee, Scientist ’G’ Defence Metallurgical Research Laboratory DRDO for his fruitful comments and suggestions during the research work and Aeronautics Research and Develop ment Board (ARDB) - DRDO for funding this study (Grant number: ARDB / 01 / 2031951 / M / I).

References

Acevedo, R., Sedlak, P., Kolman, R., Fredel, M. ,2020. Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves: State of the art review. Journal of Materials Research and Technology, 9(4), 9457–9477. https: // doi.org / 10.1016 / j.jmrt.2020.05.092 Features, O. M. (2015). Standard Practice for Extreme Value Analysis of Nonmetallic Inclusions in Steel. 08 (2014), 1–11. https: // doi.org / 10.1520 / E2283-08R19.1 Gaur, V., Doquet, V., Persent, E., Mareau, C., Roguet, E., Kittel, J. (2015). Surface versus internal fatigue crack initiation in steel: Influence of mean stress. International Journal of Fatigue, 82, 437–448. https: // doi.org / 10.1016 / j.ijfatigue.2015.08.028 Gaur, V., Enoki, M., Okada, T., Yomogida, S. (2018). A study on fatigue behavior of MIG-welded Al-Mg alloy with di ff erent filler-wire materials under mean stress. International Journal of Fatigue, 107, 119-129. https: // doi.org / 10.1016 / j.ijfatigue.2017.11.001 Gaur, V., Bri ff od, F., Enoki, M. (2020). Micro-mechanical investigation of fatigue behavior of Al alloys containing surface / superficial defects. Materials Science and Engineering: A, 775, 138958. https: // doi.org / 10.1016 / j.msea.2020.138958 Jebieshia, T. R., Kim, J. M., Kang, J. W., Son, S. W., Kim, H. D. (2020). Microstructural and very high cycle fatigue (VHCF) behavior of Ti6Al4V-A comparative study. Materials, 18(3), 1–18. https: // doi.org / 10.3390 / ma13081948 Mostafaei, A., Zhao, C., He, Y., Reza Ghiaasiaan, S., Shi, B., Shao, S., Shamsaei, N., Wu, Z., Kouraytem, N., Sun, T., Pauza, J., Gordon, J. V., Webler, B., Parab, N. D., Asherloo, M., Guo, Q., Chen, L., Rollett, A. D. (2022). Defects and anomalies in powder bed fusion metal additive manufacturing. Current Opinion in Solid State and Materials Science, 26(2), 100974. https: // doi.org / 10.1016 / j.cossms.2021.100974 Murakami, Y. (n.d.). Metal Fatigue.. E ff ects of Small Defects and Nonmetallic Inclusions (Elsevier, 2002). Pimenov, D. Y., Mia, M., Gupta, M. K., Machado, A. R., Tomaz, ´I. V., Sarikaya, M., Wojciechowski, S., Mikolajczyk, T. Kaplonek, W. (2021). Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: A review and future prospect. Journal of Materials Research and Technology, 11, 719–753. https: // doi.org / 10.1016 / j.jmrt.2021.01.031 Veiga, C., Loureiro, A. J. R., Davim, J. P. (2012). Properties and applications of titanium alloys. Reviews on Advanced Materials Science, 32, s. 133-148. Yakout, M., Elbestawi, M. A., Veldhuis, S. C. (2018). A review of metal additive manufacturing technologies. Solid State Phenomena, 278 SSP, 1–14. https: // doi.org / 10.4028 / www.scientific.net / SSP.278.1 Yap, C. Y., Chua, C. K., Dong, Z. L., Liu, Z. H., Zhang, D. Q., Loh, L. E., Sing, S. L. (2015). Review of selective laser melting: Materials and applications. Applied Physics Reviews, 2(4). https: // doi.org / 10.1063 / 1.4935926

Made with FlippingBook - Online catalogs