PSI - Issue 42
Denny Knabner et al. / Procedia Structural Integrity 42 (2022) 561–569 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
569
9
References
[1] Buch A. Fatigue and fretting of pin-lug joints with and without interference fit. Wear 1977;43:9 – 16. https://doi.org/10.1016/0043 1648(77)90038-2. [2] Juoksukangas J, Lehtovaara A, Mäntylä A. Experimental and numerical investigation of fretting fatigue behavior in bolted joints. Tribology International 2016;103:440 – 8. https://doi.org/10.1016/j.triboint.2016.07.021. [3] Rajasekaran R, Nowell D. Fretting fatigue in dovetail blade roots. Experiment and Analysis 2006;39:1277 – 85. [4] Shi L, Wei DS, Wang YR, Tian AM, Li D. An investigation of fretting fatigue in a circular arc dovetail assembly. International Jourmal of Fatigue 2016;82:226 – 37. [5] Chao J. Fretting-fatigue induced failure of a connecting rod. Engineering Failure Analysis 96: 186-201 2019. [6] Merrit D, Zhu G. The Prediction of Connecting Rod Fretting and Fretting Initiated Fatigue Fracture. Journal of Engines 113: 1633-1638 2004. [7] Juuma T. Torsional fretting fatigue strength of a shrink-fitted shaft with a grooved hub. Tribology International 2000;33:537 – 43. https://doi.org/10.1016/S0301-679X(00)00102-X. [8] Bertini L, Santus C. Fretting fatigue tests on shrink-fit specimens and investigations into the strength enhancement induced by deep rolling. International Journal of Fatigue 2015;81:179 – 90. https://doi.org/10.1016/j.ijfatigue.2015.08.007. [9] Waterhouse RB. Fretting Fatigue. Elsevier Science & Technology, 1981. [10] Hills DA, Nowell D. Mechanics of Fretting Fatigue. Dortrecht Boston London: Kluwer Academic Publisher; 1994. [11] Fouvry S, Kubiak K. Development of a fretting-fatigue mapping concept: The effect of material properties and surface treatments. Wear 2009;267:2186 – 99. https://doi.org/10.1016/j.wear.2009.09.012. [12] Amargier R, Fouvry S, Chambon L, Schwob C, Poupon C. Stress gradient effect on crack initiation in fretting using a multiaxial fatigue framework. International Journal of Fatigue 2010;32:1904 – 12. https://doi.org/10.1016/j.ijfatigue.2010.06.004. [13] Juoksukangas J, Nurmi V, Hintikka J, Vippola M, Lehtovaara A, Mäntylä A, et al. Characterization of cracks formed in large flat-on-flat fretting contact. International Journal of Fatigue 2019;124. https://doi.org/10.1016/j.ijfatigue.2019.03.004. [14] Nakazawa K, Sumita M, Maruyama N. Effect of Relative Slip Amplitude on Fretting Fatigue of High Strength Steel. Fatigue & Fracture of Engineering Materials & Structures 1994;17:751 – 9. https://doi.org/10.1111/j.1460-2695.1994.tb00806.x. [15] Sadeler R. Influence of contact pressure on fretting fatigue behaviour of AA 2014 alloy with dissimilar mating material. Fatigue & Fracture of Engineering Materials & Structures 2006;29:1039 – 44. https://doi.org/10.1111/j.1460-2695.2006.01072.x. [16] Nishioka K, Hirakawa K. Fundamental Investigations of Fretting Fatigue : Part 1 -5. Bulletin of JSME 1969;12:692 – 7. https://doi.org/10.1299/jsme1958.12.692. [17] Magaziner R, Jin O, Mall S. Slip regime explanation of observed size effects in fretting. Wear 2004;257:190 – 7. https://doi.org/10.1016/j.wear.2003.12.005. [18] Vingsbo O, Soderberg D. On fretting maps. Wear 1988;126:131 – 47. [19] Li ZY, Liu XL, Wu GQ, Sha W. Observation of fretting fatigue cracks of Ti6Al4V titanium alloy. Materials Science and Engineering: A 2017;707:51 – 7. https://doi.org/10.1016/j.msea.2017.09.005. [20] Bhatti NA, Wahab MA. Fretting fatigue crack nucleation: A review. Tribology International 2018;121:121 – 38. [21] Sunde SL, Berto F, Haugen B. Predicting fretting fatigue in engineering design. International Journal of Fatigue 2018;117:314 – 26. https://doi.org/10.1016/j.ijfatigue.2018.08.028. [22] Ruiz C, Boddington PHB, Chen KC. An investigation of fatigue and fretting in a dovetail joint. Experimental Mechanics 1984;24:208 – 17. https://doi.org/10.1007/BF02323167. [23] Sunde SL, Haugen B, Berto F. Experimental and numerical fretting fatigue using a new test fixture. International Journal of Fatigue 2021. [24] Findley WN. A Theory for the Effect of Mean Stress on Fatigue of Metals Under Combined Torsion and Axial Load or Bending. Journal of Engineering for Industry 1959;81:301 – 5. https://doi.org/10.1115/1.4008327. [25] Vetter S, Leidich E, Ziaei M, Herrmann M, Hasse A. Durability of hypotrochoidal shaft-hub connections under rotating bending with static torsion. Procedia Structural Integrity 2019;17:90 – 7. [26] Suchý L, Hasse A. Fatigue of multiaxially loaded shaft-hub connection under different load parameters. In: Abdel Wahab M, editor. Proceedings of the 8th international conference on fracture, fatigue and wear, Singapore: Springer Singapore; 2021, p. 473 – 87. [27] Vetter S, Leidich E, Hasse A. Gestaltfestigkeit von hypotrochoiden Polygon-Welle-Nabe-Verbindungen. Konstruktion 2020. [28] Gürer G, Gür CH. Failure analysis of fretting fatigue initiation and growth on railway axle press-fits. Engineering Failure Analysis 2018;84:151 – 66. https://doi.org/10.1016/j.engfailanal.2017.06.054. [29] Shen LJ, Lohrengel A, Schäfer G. Plain – fretting fatigue competition and prediction in spline shaft-hub connection. International Journal of Fatigue 2013;52:68 – 81. https://doi.org/10.1016/j.ijfatigue.2012.11.012. [30] Pourheidar A, Regazzi D, Cervello S, Foletti S, Beretta S. Fretting fatigue analysis of full-scale railway axles in presence of artificial micro-notches. Tribology International 2020;150:106383. https://doi.org/10.1016/j.triboint.2020.106383. [31] Knabner D, Suchý L, Vetter S, Hasse A. Comparative Study of Crack Initiation Criteria for Flat – Flat Contacts Subjected to Fretting Fatigue of Drive-Train Components. Proceedings of the 9th International Conference on Fracture, Fatigue and Wear, Ghent: Springer Singapore; 2022. [32] Hück M. An improved procedure for the evaluation of staircase step tests (German: Ein verbessertes Verfahren fur die Auswertung von Treppenstufenversuchen). Zeitschrift Werkstofftechnik 1983;14:406 – 17. [33] Knabner D, Hauschild S, Suchý L, Vetter S, Leidich E, Hasse A. Calculation method for the fail- safe design of steel─steel contacts subject to fretting fatigue based on a worst-case assumption. International Jourmal of Fatigue n.d.;In Review Process. [34] Böhme SA, Vinogradov A, Papuga J, Berto F. A novel predictive model for multiaxial fatigue in carburized bevel gears. Fatigue & Fracture of Engineering Materials & Structures 2021;44:2033 – 53. https://doi.org/10.1111/ffe.13475. [35] Papuga J, Nesládek M, Hasse A, Cízová E, Suchý L. Benchmarking Newer Multiaxial Fatigue Strength Criteria on Data Sets of Various Sizes. Metals 2022;12:289. https://doi.org/10.3390/met12020289.
Made with FlippingBook - Online catalogs