PSI - Issue 42

Christos F. Markides et al. / Procedia Structural Integrity 42 (2022) 202–209 Stavros K. Kourkoulis and Christos F. Markides et al. / Structural Integrity Procedia 00 (2022) 000 – 000

205

4

f rame P

f rame P

1 R

Indenter

Parabolic distribution of concentrated forces

Part of the low impact on elastic response compete disc of its global

1 

j Y 

j 

2 1   

j j ( ) F 

2 1 R R  L

j Y

L

j ( ) P 

j X

1 Z

Parabolic p r essure

j t

j Z

n Z m Z

CTBD

Complete disc

j X 

Internal arc

Cavity

Fig. 3. Substitution of the parabolic contact pressure by a parabolic distribution of point forces.

The problem is solved in the mathematical ζ = ρ e i θ plane and for this reason the CTBD lying in the z = r e i θ plane, is mapped onto the unit CTBD by the function ω ( ζ )= R ζ , with s=e i θ being the point ζ on the unit circle γ , Fig.4.

m Y

Part of the compete disc of low impact on its global elastic response

j Y

j Y

L −

L

j Z −

j Z

j X

m Z j 

j 

j  −

m 

i e z r  =

y

i e    =

( ) R    = =

z

r 

x

O

O

j  1

R

i e s  =

m 

j  −

m Z

j X

j 

j Z

j Z −

L

L −

j Y

j Y

m Y

Fig. 4. The conformal mapping.

By demanding now that the periphery of the disc must be free from stresses (or, equivalently, that the condition ( ) ( ) ( ) 0 s s s s     + + = must be fulfilled), Muskhelishvili’s complex potentials can be obtained in terms of the vari able ζ , and in turn, by inversing the transformation z = ω ( ζ )= R ζ , in terms of the variable z , as:

   

   

  

   

z Z z Z + −

z Z z Z + −

z Z z Z − −

1

n

i

i

j 

j 

j

j

( ) z

log

( ) F e  

log

log

iP

e

=

+

+

m

c

j

j

2 (1 )   +

1

j

=

m

j

j

  

   

  

   

2 Z z R Z − 2

2 Z z R Z − 2

iP z Z  −

  

z Z −

z

n

i

i

j 

j 

j

j

j

j

( ) F e  

e

+

+

+

c

m

m

 

j

j

2 R Z z R Z z − − 2

4 R Z z −

2 2

4 R Z z −

2 2

(1 ) 2   + 

1

j

=

m

m

j

j

(5)

     

   

  

   

2 R Z z R Z z + − 2 j

2 R Z z R Z z + − 2 j

2 R Z z R Z z − − 2 m

n

i

i

j 

j 

log

( ) F e  

log

log

iP

e

+

+

+

c

j

j

2 (1 ) 1 4 (1 )      + −

1

j

=

m

j

j

  

(

)

z

n

(

)

2 ( )   j j

i

i

j 

iP Z Z

j F e Z e Z +

+

− −

c

m m

j

j

2

R

+ 

1

j

=

Made with FlippingBook - Online catalogs