PSI - Issue 42
Aditya Pandey et al. / Procedia Structural Integrity 42 (2022) 1017–1024 Pandey et al. / Structural Integrity Procedia 00 (2019) 000–000
1024
8
References
Deng, D., Peng, R. L., Brodin, H., Moverare, J. (2018). Microstructure and mechanical properties of Inconel 718 produced by selective laser melting: Sample orientation dependence and e ff ects of post heat treatments. Materials Science and Engineering A, 713(December 2017), 294–306. https: // doi.org / 10.1016 / j.msea.2017.12.043 Frazier, W. E. (2014). Metal additive manufacturing: A review. Journal of Materials Engineering and Performance, 23(6), 1917–1928. https: // doi.org / 10.1007 / s11665-014-0958-z Gaur, V., Doquet, V., Persent, E., Mareau, C., Roguet, E., Kittel, J. (2015). Surface versus internal fatigue crack initiation in steel: Influence of mean stress. International Journal of Fatigue, 82, 437–448. https: // doi.org / 10.1016 / j.ijfatigue.2015.08.028 Gaur, V., Enoki, M., Okada, T., Yomogida, S. (2018). A study on fatigue behavior of MIG-welded Al-Mg alloy with di ff erent filler-wire materials under mean stress. International Journal of Fatigue, 107(October 2017), 119–129. https: // doi.org / 10.1016 / j.ijfatigue.2017.11.001 Johnson, A. S., Shao, S., Shamsaei, N., Thompson, S. M., Bian, L. (2017). Microstructure, Fatigue Behavior, and Failure Mechanisms of Direct Laser-Deposited Inconel 718. Jom, 69(3), 597–603. https: // doi.org / 10.1007 / s11837-016-2225-2 Lee, Y. S., Zhang, W. (2016). Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Additive Manufacturing, 12, 178–188. https: // doi.org / 10.1016 / j.addma.2016.05.003 Pei, C., Shi, D., Yuan, H., Li, H. (2019). Assessment of mechanical properties and fatigue performance of a selective laser melted nickel-base superalloy Inconel 718. Materials Science and Engineering A, 759(April), 278–287. https: // doi.org / 10.1016 / j.msea.2019.05.007 Schneider, J., Lund, B., Fullen, M. (2018). E ff ect of heat treatment variations on the mechanical properties of Inconel 718 selective laser melted specimens. Additive Manufacturing, 21(December 2017), 248–254. https: // doi.org / 10.1016 / j.addma.2018.03.005 Wilson-Heid, A. E., Wang, Z., McCornac, B., Beese, A. M. (2017). Quantitative relationship between anisotropic strain to fail ure and grain morphology in additively manufactured Ti-6Al-4V. Materials Science and Engineering A, 706(July), 287–294. https: // doi.org / 10.1016 / j.msea.2017.09.017 Yadav, V. K., Gaur, V., Singh, I. V. (2022). Combined e ff ect of residual and mean stresses on fatigue behavior of welded aluminum 2024 alloy. International Journal of Fatigue, 155(September 2021), 106565. https: // doi.org / 10.1016 / j.ijfatigue.2021.106565 Zhang, X., Mao, B., Mushongera, L., Kundin, J., Liao, Y. (2021). Laser powder bed fusion of titanium aluminides: An investigation on site-specific microstructure evolution mechanism. Materials and Design, 201, 109501. https: // doi.org / 10.1016 / j.matdes.2021.109501 Zhao, J. R., Hung, F. Y., Lui, T. S. (2020). Microstructure and tensile fracture behavior of three-stage heat treated inconel 718 alloy produced via laser powder bed fusion process. Journal of Materials Research and Technology, 9(3), 3357–3367. https: // doi.org / 10.1016 / j.jmrt.2020.01.030 Zhong, L., Hu, H., Liang, Y., Huang, C. (2019). High cycle fatigue performance of inconel 718 alloys with di ff erent strengths at room temperature. Metals, 9(1), 1–14. https: // doi.org / 10.3390 / met9010013
Made with FlippingBook - Online catalogs