PSI - Issue 42
Daniele Cirigliano et al. / Procedia Structural Integrity 42 (2022) 1728–1735 Cirigliano et al. / Structural Integrity Procedia 00 (2019) 000–000
1731
4
Table 1: Parabolic oxidation constant as a function of temperature for Inconel 718 according to (Al-Hatab et al., 2011) and (Greene and Finfrock, 2000).
Table 2: Oxidation damage material constants for Inconel 718 (Amaro et al., 2010), (Sehitoglu and Boismier, 1990).
2 / cm 4 s K
2 / s
p , µ m
Temperature, K K ′ p , mg
Constant
Value
Units
a β B
1.5 1.5
- -
1023 1123 1173 1273 1373 1473 1573
6.75E-8 2.13E-7 2.67E-6 4.67E-5 9.60E-5 1.94E-4 2.42E-4
1.22E-6 3.95E-6 4.95E-5 8.66E-4 1.78E-3 3.60E-3 4.49E-3
6 . 93 · 10 − 3 1 . 12 · 10 − 10 f ( T ) , see Tab. 1
s − 0 . 5
µ m · s − 0 . 75
δ 0 K p h cr ξ ox
2 / s
µ m
µ m
461.4
0.44
-
10 2
1023 K 1123 K 1223 K
10 0 h 0 , oxide thickness ( µ m) 10 1
2 / s
K p = 3 . 95 E − 6 µ m K p = 4 . 95 E − 5 µ m
2 / s
2 / s
K p = 1 . 22 E − 6 µ m
10 − 1
10 1
10 2
10 3
10 4
time (hours)
Fig. 1: Oxide layer growth in time for Inconel 718 at various temperatures.
(a)
(b)
Fig. 2: Representation of the tested combustion chamber. Burner only (a) and complete combustion chamber (b).
CFD RANS simulations have been executed using the commercial software Ansys Fluent. The combustion mechanism for methane/air consists of a reduced subset of 22 species from the much larger reaction mechanism GRIMech 3.0 (Smith et al., 1999). Radiation heat transfer of the hot gases is included with the Discrete Order model.
Made with FlippingBook - Online catalogs