PSI - Issue 42
Sebastian Henschel et al. / Procedia Structural Integrity 42 (2022) 110–117 S. Henschel and L. Kru¨ger / Procedia Structural Integrity 00 (2019) 000–000
117
8
Table 2. Summary of similarities and di ff erences of di ff erent calibration methods. Method bars apart (2 × ) bars together
proposed method
Assumptions
momentum conservation
none
Input Setup
SG voltages, striker velocity, wave speed
SG voltages, displacements bars are not rearranged
rearrange bars 2 × rectangular (with plateau) expected vs. measured strains separate, without specimen
Pulse shape
any shape
calculated vs. measured displacements
Calibration
during actual test possible
Eqs. 1, 4
Eq. 6
Eqs. 10, 11
K ε, I U I , ε R = K ε, I U R
ε I = K 1 U I , ε R = K 1 U R
ε I =
Calculation
ε ′ T = K ε, T U T
ε T = K σ ε ′ T
ε T = K 2 U T
Acknowledgment
The authors thank the German Research Foundation (DFG) for the financial support in the subproject C05 of the Collaborative Research Center 920 – Project-ID 169148856.
References
Alves, M., Karagiozova, D., Micheli, G.B., Calle, M., 2012. Limiting the influence of friction on the split Hopkinson pressure bar tests by using a ring specimen. Int. J. Impact Eng. 49, 130–141. doi: 10.1016/j.ijimpeng.2012.04.005 . Casem, D.T., Fourney, W.L., Chang, P., 2003. A polymeric split Hopkinson pressure bar instrumented with velocity gages. Exp. Mech. 43, 420–427. doi: 10.1007/BF02411347 . Chen, W.W., Song, B. (Eds.), 2011. Split Hopkinson (Kolsky) bar: Design, testing and applications. Springer, New York. doi: 10.1007/ 978-1-4419-7982-7 . Chen, W.W., Song, B., Frew, D.J., Forrestal, M.J., 2003. Dynamic small strain measurements of a metal specimen with a split Hopkinson pressure bar. Exp. Mech. 43, 20–23. doi: 10.1007/BF02410479 . Forrestal, M.J., Frew, D.J., Chen, W.W., 2002. The e ff ect of sabot mass on the striker bar for split Hopkinson pressure bar experiments. Exp. Mech. 42, 129–131. doi: 10.1007/BF02410873 . Gama, B.A., Lopatnikov, S.L., Gillespie, Jr., J.W., 2004. Hopkinson bar experimental technique: A critical review. Appl. Mech. Rev. 57, 223–250. doi: 10.1115/1.1704626 . Gerlach, R., Sathianathan, S.K., Siviour, C., Petrinic, N., 2011. A novel method for pulse shaping of Split Hopkinson tensile bar signals. Int. J. Impact Eng. 38, 976–980. doi: 10.1016/j.ijimpeng.2011.08.007 . Gray, G.T., 2000. Classic split-Hopkinson pressure bar testing, in: Kuhn, H., Medlin, D. (Eds.), ASM Handbook. ASM International, Ohio. volume 8, pp. 462–476. doi: 10.31399/asm.hb.v08.a0003296 . Henschel, S., 2018. Einfluss von Temperatur und Beanspruchungsrate auf das Festigkeits-, Verformungs- und Za¨higkeitsverhalten des Stahls G42CrMo4 mit unterschiedlicher Einschlusscharakteristik: Dissertation. volume B 379 of Freiberger Forschungshefte . TU Bergakademie, Freiberg. URL: https://nbn-resolving.org/urn:nbn:de:bsz:105-qucosa2-331498 . Henschel, S., Krewerth, D., Ballani, F., Weidner, A., Kru¨ger, L., Biermann, H., Emmel, M., Aneziris, C.G., 2013. E ff ect of filter coating on the quasi-static and cyclic mechanical properties of a G42CrMo4 casting. Adv. Eng. Mater. 15, 1216–1223. doi: 10.1002/adem.201300125 . Kariem, M.A., Beynon, J.H., Ruan, D., 2012. Misalignment e ff ect in the split Hopkinson pressure bar technique. Int. J. Impact Eng. 47, 60–70. doi: 10.1016/j.ijimpeng.2012.03.006 . Klepaczko, J.R., 2007. Introduction to experimental techniques for materials testing at high strain rates. volume 26 of Institute of Aviation scientific library . Inst. of Aviation Scientific Publ. Group, Warsaw. Koumlis, S., Lamberson, L., 2019. Strain Rate Dependent Compressive Response of Open Cell Polyurethane Foam. Exp. Mech. 59, 1087–1103. doi: 10.1007/s11340-019-00521-3 . Li, X., Lok, T., Zhao, J., Zhao, P., 2000. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress–strain curves for rocks. Int. J. Rock Mech. Min. 37, 1055–1060. doi: 10.1016/S1365-1609(00)00037-X . Santiago, R.C., Alves, M., 2013. Dynamic characterization of a fiber-metal laminate. Key Eng. Mat. 535–536, 48–51. doi: 10.4028/www. scientific.net/KEM.535-536.48 . Song, B., Connelly, K., Korellis, J., Lu, W.Y., Antoun, B.R., 2009. Improved Kolsky-bar design for mechanical characterization of materials at high strain rates. Meas. Sci. Technol. 20, 115701. doi: 10.1088/0957-0233/20/11/115701 .
Made with FlippingBook - Online catalogs