PSI - Issue 42

Darko Pastorcic et al. / Procedia Structural Integrity 42 (2022) 374–381 Darko Pastorcic et al./ Structural Integrity Procedia 00 (2019) 000 – 000

381

8

References

Bao, Y., Wierzbicki, T., 2004. On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences 46, 81 – 98. https://doi.org/10.1016/j.ijmecsci.2004.02.006 Bayley C., Sterjovski Z., 2019. Metallurgical Factors Affecting the Dynamic Fracture of Naval Shipbuilding Steels. Defence Research and Development Canada, Scientific Report. Cerik, B.C., Choung, J., 2020. Ductile Fracture Behavior of Mild and High-Tensile Strength Shipbuilding Steels. Applied Sciences 10, 7034. https://doi.org/10.3390/app10207034 Cui, J., Wang, D., Ma, N., 2019. Case studies on the probabilistic characteristics of ultimate strength of stiffened panels with uniform and non uniform localized corrosion subjected to uniaxial and biaxial thrust. International Journal of Naval Architecture and Ocean Engineering 11, 97 – 118. https://doi.org/10.1016/j.ijnaoe.2018.02.011 Dueren, C.F., 1990. Prediction of the hardness in the HAZ of HSLA steels by means of the C-equivalent, in: Conference on Hardenability of Steels. Derby. Feng, L., Hu, L., Chen, X., Shi, H., 2020. A parametric study on effects of pitting corrosion on st iffened panels’ ultimate strength. International Journal of Naval Architecture and Ocean Engineering 12, 699 – 710. https://doi.org/10.1016/j.ijnaoe.2020.08.001 Hancock, J.W., Mackenzie, A.C., 1976. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. Journal of the Mechanics and Physics of Solids 24, 147 – 160. https://doi.org/10.1016/0022-5096(76)90024-7 Hong, H.P., 1999. Application of the Stochastic Process to Pitting Corrosion. CORROSION 55, 10 – 16. https://doi.org/10.5006/1.3283958 Ikram, A., Raza, A., Chung, H., 2020. Investigation of Single Pass Welding of Thick AH36 Steel Plates in a Square Groove Butt Joint Configuration During AC-GMAW. Journal of Welding and Joining 38, 254 – 262. https://doi.org/10.5781/JWJ.2020.38.3.4 Ivosevic, S., Mestrovic, R., Kovac, N., 2019. Probabilistic estimates of corrosion rate of fuel tank structures of aging bulk carriers. International Journal of Naval Architecture and Ocean Engineering 11, 165 – 177. https://doi.org/10.1016/j.ijnaoe.2018.03.003 Kanvinde, A.M., Deierlein, G.G., 2006. The Void Growth Model and the Stress Modified Critical Strain Model to Predict Ductile Fracture in Structural Steels. J. Struct. Eng. 132, 1907 – 1918. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(1907) Kim, D.K., Lim, H.L., Cho, N.K., 2020a. An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part II = Application to the ship’s ballast tank. International Journal of Naval Architec ture and Ocean Engineering 12, 645 – 656. https://doi.org/10.1016/j.ijnaoe.2020.07.002 Kim, D.K., Wong, E.W.C., Cho, N.K., 2020b. An advanced technique to predict time-dependent corrosion damage of onshore, offshore, nearshore and ship structures: Part I = generalisation. International Journal of Naval Architecture and Ocean Engineering 12, 657 – 666. https://doi.org/10.1016/j.ijnaoe.2020.06.007 Kosareviych R, Rusyn B, Pokhmursky A, 2016. Application of stochastic point processes for modelling of pitting. Metal Journal. Lee, Y.-W., Wierzbicki, T., 2005. Fracture prediction of thin plates under localized impulsive loading. Part II: discing and petalling. International Journal of Impact Engineering 31, 1277 – 1308. https://doi.org/10.1016/j.ijimpeng.2004.07.011 López De La Cruz, J., Gutiérrez, M.A., 2008. Spatial statistics of pitting corrosion patterning: Quadrat counts and the non-homogeneous Poisson process. Corrosion Science 50, 1441 – 1448. https://doi.org/10.1016/j.corsci.2008.01.003 López De La Cruz, J., Kuniewski, S.P., Van Noortwijk, J.M., Gutiérrez, M.A., 2008. Spatial Nonhomogeneous Poisson Process in Corrosion Management. J. Electrochem. Soc. 155, C396. https://doi.org/10.1149/1.2926543 Paik, J.K., Lee, J.M., Ko, M.J., 2004. Ultimate shear strength of plate elements with pit corrosion wastage. Thin-Walled Structures 42, 1161 – 1176. https://doi.org/10.1016/j.tws.2004.03.024 Pavlina, E.J., Van Tyne, C.J., 2008. Correlation of Yield Strength and Tensile Strength with Hardness for Steels. J. of Materi Eng and Perform 17, 888 – 893. https://doi.org/10.1007/s11665-008-9225-5 Ran, M.-M., Sun, F.-F., Li, G.-Q., Kanvinde, A., Wang, Y.-B., Xiao, R.Y., 2019. Experimental study on the behavior of mismatched butt welded joints of high strength steel. Journal of Constructional Steel Research 153, 196 – 208. https://doi.org/10.1016/j.jcsr.2018.10.003 Shin, W., Chang, K.-H., Muzaffer, S., 2021. Fatigue analysis of cruciform welded joint with weld penetration defects. Engineering Failure Analysis 120, 105111. https://doi.org/10.1016/j.engfailanal.2020.105111 Tarantseva, K.R., 2010. Models and methods of forecasting pitting corrosion. Prot Met Phys Chem Surf 46, 139 – 147. https://doi.org/10.1134/S2070205110010211 Velázquez, J., van der Weide, H., Hernandez-sÁNCHEZ, E., Hernández, H., 2014. Statistical Modelling of Pitting Corrosion: Extrapolation of the Maximum Pit Depth-Growth. International Journal of Electrochemical Science 9, 4129 – 4143. Vukelic, G., Vizentin, G., Ivosevic, S., 2021. Tensile strength behaviour of steel plates with corrosion-induced geometrical deteriorations. Ships and Offshore Structures 1 – 9. https://doi.org/10.1080/17445302.2021.2006969 Vukelic, G., Vizentin, G., Ivosevic, S., Bozic, Z., 2022. Analysis of prolonged marine exposure on properties of AH36 steel. Engineering Failure Analysis 135, 106132. https://doi.org/10.1016/j.engfailanal.2022.106132 Zhang, Y., Huang, Y., Meng, F., 2017. Ultimate strength of hull structural stiffened plate with pitting corrosion damage under unaxial compression. Marine Structures. https://doi.org/10.1016/j.marstruc.2017.07.006 Zhu, X.-K., Leis, B.N., 2005. Influence of Yield-to-Tensile Strength Ratio on Failure Assessment of Corroded Pipelines. Journal of Pressure Vessel Technology 127, 436 – 442. https://doi.org/10.1115/1.2042481

Made with FlippingBook - Online catalogs