PSI - Issue 42
Olha Zvirko et al. / Procedia Structural Integrity 42 (2022) 522–528 Olha Zvirko / Structural Integrity Procedia 00 (2022) 000 – 000
528
7
Dmytrakh, I., Syrotyuk, A., Leshchak, R., 2019. Specific effects of hydrogen concentration on resistance to fracture of ferrite-pearlitic pipeline steels. Procedia Structural Integrity 16, 113 – 120. Haeseldonckx, D., D’haeseleer , W., 2007. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure. International Journal of Hydrogen Energy 32(10 – 11), 1381 – 1386. Joo, M.S., Suh, D.W., Bhadeshia H.K.D.H., 2013. Mechanical anisotropy in steels for pipelines. ISIJ international 53.8, 1305 – 1314. Krasovskii, A.Ya., Lokhman, I.V., Orynyak, I.V., 2012. Stress-corrosion failures of main pipelines. Strength of Materials 44(2), 129 – 143. Masoumi, M. Herculano, L.F.G., de Abreu, H.F.G., 2015. Study of texture and microstructure evaluation of steel API 5L X70 under various thermomechanical cycles. Materials Science and Engineering A 639, 550 – 558. Marushchak, P.О., Kret, N.V., Bishchak, R.Т., Kurnat, І.М., 2019. Influence of texture and hydrogenation on the mechanical pr operties and character of fracture of pipe steel. Materials Science 55(3), 381 – 385. Mohtadi-Bonab, M.A., Eskandari, M., 2017. A focus on different factors affecting hydrogen induced cracking in oil and natural gas pipeline steel. Engineering Failure Analysis 79, 351e60. Mohtadi-Bonab, M.A., Ghesmati-Kucheki, H., 2019. Important factors on the failure of pipeline steels with focus on hydrogen induced cracks and improvement of their resistance: Review paper. Metals and Materials International 25, 1109 – 1134. Nykyforchyn, H.M., Student, O.Z., 2001. Influence of hydrogen on the formation of fatigue thresholds in structural steels. Materials Science 37(2), 252 – 263. Nykyforchyn, H.M., Zvirko, O.I., Tsyrulnyk, O.T., 2016. Hydrogen assisted macrodelamination in gas lateral pipe. Procedia Structural Integrity 2, 501 – 508. Nykyforchyn, H., Tsyrulnyk, O., Zvirko, O., Hredil, M., 2020. Role of hydrogen in operational degradation of pipeline steel. Procedia Structural Integrity 28, 896 – 902. Nykyforchyn, H., Unigovskyi, L., Zvirko, O., Hredil, M., Krechkovska, H., Student, O., Tsyrulnyk, O., 2022. Susceptibility of carbon pipeline steels operated in natural gas distribution network to hydrogen-induced cracking. Procedia Structural Integrity 36, 306 – 312. Ohaeri, E., Eduok, U., Szpunar, J. 2018. Hydrogen related degradation in pipeline steel: A review. International Journal of Hydrogen Energy 43(31), 14584 – 14617. Okipnyi, I., Poberezhny, L., Zapukhliak, V., Hrytsanchuk, A., Poberezhna, L., Stanetsky, A., Kravchenko, V., Rybitskyi, I. , 2020. Impact of long term operation on the reliability and durability of transit gas pipelines. Strojnicky Casopis 70(1), 115 – 126. Shipilov, A.S., May, I.L., 2006. Structural integrity of aging buried pipelines having cathodic protection. Engineering Failure Analysis 13, 1159 – 1176. Zvirko, O.I., Kret, N.V., Tsyrulnyk, O.T., Vengrynyuk, T.P., 2018. Influence of textures of pipeline steels after operation on their brittle fracture resistance. Materials Science 54(3), 400 – 405. Zvirko, O., Gabetta, G., Tsyrulnyk, O., Kret, N., 2019. Assessment of in-service degradation of gas pipeline steel taking into account susceptibility to stress corrosion cracking. Procedia Structural Integrity 16, 121 – 125. Zvirko, O.I., 2021. In-Service degradation of structural steels (A survey). Materials Science 57(3), 319 – 330. Zvir ko, О.І., Кryzhanivskyi, E.І., Nykyforchyn, H.М., Krechkovska, H.V. , 2021. Methods for the evaluation of corrosion-hydrogen degradation of steels of oil-and-gas pipelines. Materials Science 56(5), 585 – 592.
Made with FlippingBook - Online catalogs