PSI - Issue 42
Pauline Herr et al. / Procedia Structural Integrity 42 (2022) 498–505 P. Herr et al. / Structural Integrity Procedia 00 (2019) 000–000
505
8
the filler particles can be su ffi ciently discretized without exceeding the computational capacities. Otherwise, another scale would be required in the homogenization scheme, which is currently out of the scope of our work.
Acknowledgements
This article is part of F. Bo¨deker’s doctoral thesis at the Doctoral Center for Engineering Sciences of the Re search Campus of Central Hesse under the supervision of the Justus-Liebig-University Giessen in cooperation with the University of Applied Sciences of Central Hesse (Technische Hochschule Mittelhessen).
References
Bo¨deker, F., Herr, P., Moshfegh, R., Biel, A., Marzi, S., 2022. A novel FFT-based homogenization scheme for cohesive zones. Procedia Structural Integrity of ECF23, In Preparation. Camanho, P., Da´vila, C., 2002. Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials. NASA / TM 2002211737, 1–37. Dumont, V., Badulescu, C., Adrien, J., Carrere, N., Thvenet, D., Maire, E., 2019. Experimental investigation of porosities evolution in a bonded assembly by means of X-ray tomography. The Journal of Adhesion 97(6), 528–552. Dumont, V., Badulescu, C., Stamoulis, G., Adrien, J., Maire, E., Lefvre, A., Thvenet, D., 2020. On the e ff ect of the curing cycle on the creation of pores in structural adhesive joints by means of X-ray microtomography. The Journal of Adhesion 97(12), 1073–1106. Kinloch, A.J., Lee, J.H., Taylor, A.C., Sprenger, S., Eger, C., Egan, D., 2003. Toughening structural adhesives via nano- and micro-phase inclusions. The Journal of Adhesion 79(8-9), 867–873. Lee, K., Marimuthu, K.; Lee, H., 2019. UMAT / VUMAT for linear, bilinear and piecewise Drucker-Prager models. Mendeley Data, V7. Lemaitre, J., 1996. A Course on Damage Mechanics (2nd ed.). Springer Berlin, Heidelberg. Li, B., Zhuang, X., 2020. Multiscale computation on feedforward neural network and recurrent neural network. Frontiers of Structural and Civil Engineering 14(6), 1285–1298. Loh, L., Marzi, S., 2019. A novel experimental methodology to identify fracture envelopes and cohesive laws in mixed-mode I + III. Engineering Fracture Mechanics 214, 304–319. Magri, M., Lucarini, S., Lemoine, G., Adam, L., Segurado, J., 2021. An FFT framework for simulating non-local ductile failure in heterogeneous materials. Computer Methods in Applied Mechanics and Engineering 380, 113759. Matousˇ, K., Kulkarni, M.G., Geubelle, P.H., 2008. Multiscale cohesive failure modeling of heterogeneous adhesives. Journal of the Mechanics and Physics of Solids 56(4), 1511–1533. Matousˇ, K., Geers, M.G.D., Kouznetsova, V.G., Gillman, A., 2017. A review of predictive nonlinear theories for multiscale modeling of heteroge neous materials. Journal of Computational Physics 330, 192–220. Paris, A.J., Paris, P.C., 1988. Instantaneous evaluation of J and C. International Journal of Fracture 38(1), R19–R21. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Advances in Neural Information Processing Systems 32, 8024–8035. Reimann, D., Nidadavolu, K., ul Hassan, H., Vajragupta, N., Glasmachers, T., Junker, P., Hartmaier, A., 2019. Modeling Macroscopic Material Behavior With Machine Learning Algorithms Trained by Micromechanical Simulations. Frontiers in Materials 6, 181. Rice, J.R., 1968. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics 35(2), 379–386. Santos, J.P.J.R., Correia, D.S., Marques, E.A.S., Carbas, R.J.C., Gilbert, F., da Silva, L.F.M., 2022. Characterization of the E ff ect of Hollow Glass Beads on the Mechanical Properties of Structural Adhesives. Materials 15(11), 3817 Spahn, J., Andr, H., Kabel, M., Mller, R., 2014. A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms. Frontiers of Structural and Civil Engineering 268, 871–883. Suwanpakpraek, K., Patamaprohm, B., Phongphinittana, E., Chaikittiratana, A., 2020. Experimental Investigation and Finite Element Modelling of the Influence of Hydrostatic Pressure on Adhesive Joint Failure. IOP Conference Series: Materials Science and Engineering 886, 012052.
Made with FlippingBook - Online catalogs