PSI - Issue 42

Pavel Doubek et al. / Procedia Structural Integrity 42 (2022) 1529–1536 Pavet Doubek et al./ Structural Integrity Procedia 00 (2019) 000 – 000

1536

8

to metallographic analysis by an electron microscope, identification of the real chemical composition, non-destructive capillary test and visual control of the partially machined surface to detect potential stress concentrators and microhardness test HV0.5. Based on the microhardness measurement, the course of the tensile strength was determined. It has been confirmed and quantified that the tensile strength is affected when approaching the interphase and passing through HAZ. According to the obtained results, it can be concluded that the application of different coatings to the HSS substrate can cause significant structural changes in the bi-metal interface which can affect mechanical properties in the vicinity of the interface, residual stresses and initiate a potential formation of surface concentrators. Results gained in the experimental campaign will be used in the following phases of the research to describe the fatigue behaviour of bi metal structural elements or components more profoundly. Acknowledgements Financial support from the Faculty of Civil Engineering, Brno University of Technology (project No. FAST-S-22 7881) and from Project of Czech Science Foundation - Influence of material properties of high strength steels on durability of engineering structures and bridges (project No. 21-14886S) are gratefully acknowledged. References Alam, M. M., Kaplan, A.F.H., Tuominen, J., Vuoristo, P., Miettinen, J., Poutala, J., Näkki, J., Junkala, J., Peltola, T., Barsoum, Z., 2013. Analysis of the stress raising action of flaws in laser clad deposit. Materials and Design 46, 328–333. ASTM E384: Standard Test Method for Knoop and Vickers Hardness of Materials Bhat, S., Adarsha, H., Ravinarayan, V., Koushik, V.P., 2019. Analytical model for estimation of energy release rate at mode I crack tip in bi material of identical steels joined by an over-matched weld interlayer. Procedia Structural Integrity 7, 21 – 28. Brueckner, F., Lepski, D., 2017. Laser Cladding. Springer Verlag, Springer Series in Materials Science. Doubek, P., Malíková, L., Seitl, S., 2022. Laser cladded protective layer on the S960, microhardness in the vicinity of the bi-material interface. MSMF10 Conference Series: Materials structure and micromechanics of fracture, submitted. Guo, W., Li, L., Crowther, D., Dong, S., 2016. Laser welding of high strength steels (S960 and S700) with medium thickness. Journal of Laser Applications 28(2):022425. H aušild , P., Materna, A., Kocmanová, L., Matějíček, J., 2016. Determination of the individual phase properties from the measured grid indentation data. Journal of Materials Research, Vol 31 (22), 3538 – 3548. ISO 23277:2015 Non-destructive testing of welds — Penetrant testing — Acceptance levels Kocmanová, L., Haušild, P., Materna, A., Matějíček, J., 2015. Investigation of Indentation Parameters Near the Interface between Two Materials. Key Engineering Materials, Vol. 662, 31 – 34. Klusák J., Krepl O. 2018, Multi-parameter average strain energy density factor criterion applied on the bi-material notch problem. Procedia Struct. Integr. 13, 1261-1266 Krepl O., Klusák J., 2019, Multi-parameter failure assessment of a bi-material V-notch-Crack initiation from a free-edge singularity. Theor. Appl. Fract. Mech. 100, 233-241 Laser Therm s.r.o. Homepage – Laser Therm s.r.o. [online, 5.6.2022]. Available from: https://www.lasertherm.cz/eng/technologies/laser technologies/laser-cladding. Malau, V., Arifudin, L., 2016. Vickers Microhardness Dependence Load and Determining of Tensile Strength of HQ 705 Steel fromMicrohardness Curves. Applied Mechanics and Materials 842, 43 – 52. Malíková, L., Miarka, P., Doubek, P., Seitl, S., 2022. Influence of the interphase between laser-cladded metal layer and steel substrate on the fatigue propagation of a short edge crack, Frattura ed Integrita Strutturale, Vol. 59, 514 – 524. Malíková, L., Klusák J., 2018, Multi-Parameter Fracture Mechanics: Crack Approaching a Bi-Material Interface. Key Eng. Mater. 784,79-84 Motarjemi, A., Koçak, M., Ventzke, V., 2002. Mechanical and fracture characterization of a bi-material steel plate. International Journal of Pressure Vessels and Piping 79(3), 181 – 191. Náhlík L., Šestáková L., Hutař P., Knésl Z. 2011, Generalized linear elastic fracture mechanics: an application to a crack touching the bimaterial interface. Key Eng. Mater. 452-453, 445-448 Ševčík M., Hutař P., Knésl Z., Náhlík L., Zouhar M. 2012 Estimation of the critical configuration of a crack arrested at the interface between two materials. Comp. Mater. Sci. 64, 225-228 Tabor, D. 1951. Hardness of Metals, Clarendon Press, Oxford Classic Series 2000 Zhu, L., Xue, P., Lan, Q., Meng, G., Ren, Y., Yang, Z., Xu, P., Liu, Z., 2021. Recent research and development status of laser cladding: A review. Optics & Laser Technology 138, 106915.

Made with FlippingBook - Online catalogs