Crack Paths 2012
—(X'E'q 2 w 4at 1?‘ Kl,em(t)=—-f — e e a t p 8 7 t h It r“ r 2 \ / r — r R ‘—’Z
“ 4 —riElf—rl‘ —rZE;i _—'”2 air
(21)
r12 r 2 \ / r — ] / ' R
After integration (with the help of the Mathematica software) it becomes:
2 _ r R _ol’E’q 2 — 20at(e4at—l) — _—r2
22
K1,,emp(r)-
80)» J; 407r,,+—r13?/+25\/rREz 4at’?
( )
1/4 _ 2 m+10(at) _32F2(-_1,l),(l,§, rR +2F2(1,§))(i,l) rR _ 2
F 1
4 4 4a2t
44 4 2 4 4at
4
2
2
_ grR
5 1 7 i —r;R
3 5 —rR
1,4
2 2 4 ’ 4 ’ 4 ’ 2 ’2 42 a 4 ’ 2 ’ 4 ’ 4 a t
(at) F —
with the hypergeometric function:
+°° (al)k'"(a )k Zk
F a,...,a ,'b
,‘zI
— p —23
,
p qll 1
Pii 1
‘1i
)
Zk:0(b1)k___(bq)k _/
( )
where (a)kIr ( a + k )
=a(a+1)(a+2)...(a+k—1) is the Pochhammer symbol and
F(a)
+00 _ — x . . F(x)=j ux 1e du the Euler Gamma function. For instance in our case .
2F,i[a1, a2i;lbl’b2i;Z):Z:)0
% '
%
The evolution of Kuemp (the thermal correction on K ) versus time is presented in Figure 5 for a unit line heat source (qIl Wm'l) and the following typical material
characteristics:
pI7800kg.m‘3, CI460JK'1kg'1, 7tI52 Wm'lK-l, otI12.10‘° and
EI210GPa. For instance, after times of 10s and 100 s the thermal correction on the
stress intensity factor is respectively -l.2><10‘3MPa\/m and -2.1><10'3MPa\/m for a reverse cyclic plastic zone radius of 4 p m and qIl Wm'l. These values are negative
because the temperature field generates compressive circumferential normal stresses
56
Made with FlippingBook Ebook Creator