Crack Paths 2012
_
_
3 + v
_
H e rMer (l r ) : M r l
Q r l( l ) : Q r 2
Q r Z
Satisfying the boundary conditions (13) at the interface rIl one can obtain
equations for determination of the rest of unknownintegration constants:
_ l4 qh A l2—tAl2+K —K + q 1_5_5’ + B =0, _
l
2
l
2
) 8 E ;
NI1 (nil/,6 + 3M;1 (mp2 = 314,, (l)+ 0.4(q — p)h2G*;
(14)
N; (l) = 3/i(1-/i)M,,(i)/h
—0.1qhG*f/4,
__ M m _ _ _0.1qG*f
_ .
1
L ” .
where F, _ ZEh, (1 v)(1 [2)
8E” (1 v), G _4(I_V)[G, v(3+v)),
B(,5)=0l0(1—,5)[8—f1(fl)B2I321;
5’I85A’(1—fl)2h2/l2)=45(II1);
v" 2 1_ 3 E’ R2 I — ( )( 'BI)” ; Mr2(l)=q—(3+V)(l—(92);G I L ;
tI1+2A’(1—,B)2h2/l2; 21,
2 ( l — v — 2 v v ) G
16
R
2
f1(fl)=(1—fl)(5+2fl—fl2);
f=1—(1—2fl) (MO/10%)).
Solving the systems of equations (12) and (14) simultaneously, one can derive the
integration constant Al, the biggest deflection W1- (0) of the bottom part of the plate at
its center, and the moment M_l (l ) :
0R2
h2 _0,2(q—p)h2G*_0,lqh2G*f
2 1
2
A 1 — — m | : ( 3 + l / ) ( 1 + 6 ( g — 1 ) ) + 1 6 8 0 fl
5R2
3(1+v),BD 24(1+v),6’2D
9
w; (0) — qR4 5 1 %+[l -1jo4 - m -[202 1+l—"j+32ii[1+ 0%?M M+
_64D1+v 5
25(5+v)
3+v 5+vR2
l
)
+ q
h .f— q .1901);
(15)
0,292 q—p R2h2G* 0,1192 R2h2G*
3(1+v),BD
24(1+v),[)’ D 8E
l i l y - 1 ( 1 ) = , B 3 M , 2 ( I ) + ( ) , 4 I B 2 ( q _ p ) h 2 G * / 3 + 0 , l fl q h 2 f G * / l 2 =
3 2
I%(3+V)(1—92)+0,4,52(q—p)h2G*/3+0,1,Bqh2fG*/12~
Maximal stress o',‘1(0,i hO / 2) can be obtained from Eqs. (6), (13) as
_ M_ or](0,iho/2)Imi3+(g)i0,2G*p,
(16)
2,6h
2/3 h
1118
Made with FlippingBook Ebook Creator