Crack Paths 2012
where 5=1—3,B+3,B2.
Hence, the normal contact stress acting on crack faces equals
0'.(h—h0)=—P=—qfl3/5~
(5)
Stresses 0', and a2, and displacements U(r,z) and W(r,z) of a plate in the
uncracked domain (re (l;R]) , according to the model [6], are as follows
N M ZG* 2
2
2 G’
o' = — ’ + ’ z +z —0.6h
— A h — ;
6 ( )
.
2h 1
3, (
)[q2
q2
1 + _ 6.=qi+Z[3Z—;j-q2; q1=5(q —q ), qz=(q +q ); z z3 1 + _
2 1—v* U(r,z)=u(r)—z @ —l—(l%—V*)Z—2 — ( i I ) % Z 3 ;
dr dr
3h
8 E h dr
2
‘I1 a0'q2 W r,z = wr + 2 a - — +-A — A w + — - B , ( ) (1 OZ E, 2 8Eh (Z) I Z
7 ()
I
4
where
A’: V ;
B(z)=6B2z2—B3Z—2;
G*= l
[£,—v”(3+v));
(1-v)
h
4(1-v) G
,
~
~
A'E'
e 0 = ; [ 4 £(7—,v)];— v w=w+1.582q2h/E,
B 2 = 1 + i , ;
20(1-v) G
2a0G
v"A'E'
h
d2w v dw
B =B _
;
a =0.5—v'-A';
M = ZO'dZ=—D + — ——eh2 ,
3
2
4 a 0 G
0
r
i r
(drz r dr) 0 ‘12
h
- du u
dw
N, = jo'rdz=2Eh(—+v—)+2A'hq, ,Q, = K ' — ’are the bending moment, normal
_h
dr r
dr
. . and shear forces, respectively; A = ——2 + —is a—differential operator; u is a 1+v dr r dr 1 d2 v d . . .
tangential displacement of the median surface of the uncracked domain of the plate.
The general solution of Eqs. (2) and (4) has the following form
4
W, =A,r2+i§,r21nl+c,1nl+1<,+
qiz'” ,(i=1,2)
R
64 ,
,
(8)
. * wi” = Ai” + Bi” In;— qizr2 /4K,', u, : Er+ L,r_1+ u, , . . I"
where integration constants A,,B,,C,,K,, 21;”, BE”, F}, L, are determined from the
boundary conditions, and are the particular solutions.
Fromthe displacement and bending momentboundedness conditions it follows, that four integration constants are equal to zero: B, = C, = Bil’ =L, = 0. The notations used
here should be extended to account values corresponding to the upper and lower parts of
1116
Made with FlippingBook Ebook Creator