Crack Paths 2012

However, the numerical simulation is stable if one appends crack tip elements of

approximately the same length aΔ. This implies in different number N Δ of cycles per

simulation step. The latter is determined from Eq. (13) as

()n a N A K Δ Δ ≈ .

(14)

If aΔ is small enough, the numerical results are convergent.

E F F E C T I VPER O P E R T I EOSFA C R A C K EA NDI S O T R O PMI CA T E R I A L

To determine the effective properties of a cracked anisotropic material one has to solve

i j σ , the best of

the problem for 5 linearly independent variants of an average stress

which are

1)

Pa, 0ijσ= ()()()11ij≠∧≠;

1 1 1 σ =

2)

2 2 1 σ = Pa, 0ijσ= ()()()22ij≠∧≠;

3)

3 2 1 σ = Pa, 0ijσ= ()()()32ij≠∧≠;

4)

Pa, 0ijσ= ()()()31ij≠∧≠;

3 1 1 σ =

5)

Pa, 0ijσ= ()()()12ij≠∧≠

.

1 2 1 σ =

Thenamatrix

(5)

1

1,

(1)

1,1

ª

º

...

u

u

«

»

«

»

...

2,2

2,2

(5)

«

»

(1) 3,2

3,2

«

»

c

...

(15)

u

u

=

«

»

«

»

...

3,1

3,1

(5)

(5)

«

»

(1)

(1)

...

u

u

1,2 u u

1,2

2,1

2,1

« ¬

+

+

» ¼

is the matrix of effective properties of M E Ecomposite material, which relates an

average stress vector

T 1 1 2 2 3 2 3 1 1 2 , , , , σ σ σ σ σ = ª º ¬ ¼ with an average strain

T 1 1 2 32 2 312 1 , , 2 , ,2 ε ε ε ε ε º

¼ : = c . The superscript ahead of

vector

= ª ¬

,iju in Eq. (15) denotes the variant of the applied average load. The values of ( ) , k i j u

used in Eq. (15) are determined using Eq. (7).

Proposed approach utilizes special boundary integral equations (6), which use the

doubly periodic kernels [11]. Thus, for determination of the effective properties of a

mediumwith a doubly periodic array of cracks one has to consider only the surface of

one crack, because Eqs. (6), (7) already include the periodic boundary conditions at the

1109

Made with FlippingBook Ebook Creator