Crack Paths 2012
However, the numerical simulation is stable if one appends crack tip elements of
approximately the same length aΔ. This implies in different number N Δ of cycles per
simulation step. The latter is determined from Eq. (13) as
()n a N A K Δ Δ ≈ .
(14)
If aΔ is small enough, the numerical results are convergent.
E F F E C T I VPER O P E R T I EOSFA C R A C K EA NDI S O T R O PMI CA T E R I A L
To determine the effective properties of a cracked anisotropic material one has to solve
i j σ , the best of
the problem for 5 linearly independent variants of an average stress
which are
1)
Pa, 0ijσ= ()()()11ij≠∧≠;
1 1 1 σ =
2)
2 2 1 σ = Pa, 0ijσ= ()()()22ij≠∧≠;
3)
3 2 1 σ = Pa, 0ijσ= ()()()32ij≠∧≠;
4)
Pa, 0ijσ= ()()()31ij≠∧≠;
3 1 1 σ =
5)
Pa, 0ijσ= ()()()12ij≠∧≠
.
1 2 1 σ =
Thenamatrix
(5)
1
−
1,
(1)
1,1
ª
º
...
u
u
«
»
«
»
...
2,2
2,2
(5)
«
»
(1) 3,2
3,2
«
»
c
...
(15)
u
u
=
«
»
«
»
...
3,1
3,1
(5)
(5)
«
»
(1)
(1)
...
u
u
1,2 u u
1,2
2,1
2,1
« ¬
+
+
» ¼
is the matrix of effective properties of M E Ecomposite material, which relates an
average stress vector
T 1 1 2 2 3 2 3 1 1 2 , , , , σ σ σ σ σ = ª º ¬ ¼ with an average strain
T 1 1 2 32 2 312 1 , , 2 , ,2 ε ε ε ε ε º
¼ : = c . The superscript ahead of
vector
= ª ¬
,iju in Eq. (15) denotes the variant of the applied average load. The values of ( ) , k i j u
used in Eq. (15) are determined using Eq. (7).
Proposed approach utilizes special boundary integral equations (6), which use the
doubly periodic kernels [11]. Thus, for determination of the effective properties of a
mediumwith a doubly periodic array of cracks one has to consider only the surface of
one crack, because Eqs. (6), (7) already include the periodic boundary conditions at the
1109
Made with FlippingBook Ebook Creator