Crack Paths 2009
β
+ ∆ =
k σ τ
(A2)
Find
nmax
incorporates the peak opening stress σnmax, computed along the facet which undergoes
∆τ. Figure A1b shows the measured fatigue lives in
the maximumshear stress range,
reversed torsion with various static tensile stresses as a function of βSWT in which k=0.2
gave the best correlation. There again an exponential fit was obtained.
5
10
1000000
b)
a)
100000
4
10
10000
1000
y=2E+27x-7,622
1000
R2=0,9807
y =1,672e+0*7x^(-2,9937) R =0,9962
100
100
1000
10000
100 1
10
100
σ ε
β
S W T ∆ =
n
m a x n
max,n.20Findσ+τ∆=β
Figure A1: Fit of a) Smith, Watson and Topper’s fatigue criterion from tensile fatigue
data and b) Findley’s criterion from reversed torsion + static tension data.
Acknowledgments : This study was supported by the Agence Nationale de la Recherche
R E F E R E N C E S
1. Pinna C., Doquet V. (1999), Fat. Fract. Eng. Mat. Struct 22, 173-183.
2. Findley W.N.(1957), Trans A S M E79, 1337–1348.
3. Smith K.N., Watson P. and Topper T.H. (1970), Journal ofmaterials 5, 767-778.
4. Erdogan F., Ratwani M. (1972), Int. Journ. Fract. Mech 8, 87-95.
5. Doquet V., PommierS. (2004), Fat. Fract. Eng. Mat. Struct 27, 1051-1060.
6. Hourlier F., d’Hondt H., Truchon M., Pineau A. (1985), Multiaxial Fatigue, A S T M
STP 853, KJ Miller and M WBrown eds, ASTM,Philadelphia, 228-248.
7. Dahlin P., Olsson M. (2003), Fat. Fract. Eng. Mat. Struct 26, 577-588.
414
Made with FlippingBook flipbook maker