Crack Paths 2009
-0.4
0
0.4
0.8
X/Zh
T
0
.
.
.
|
.
.
.
|
.
.
Z _
_‘ Through-the-thickness average I A V
_
q) I 0
Plane strain
0 8 _
\ ~
.
Mid-thickness I M T
predictions , uZ I 0
-
_
\ \ \~
¢ I ()0
_()_4 -
Crack tip
0.6 - 0 4 I
IOIS -
097°)
'
--- FE (MT) [27]
‘
.1” P1
t
d- t
-
_1_2 _
II/ /o’/ ane s ress pre 1c1ons
0.2 — ——FE(AV) [27]
/
.
/
FE 28,30 —-
FE (MT, 0: 5°) [28]
\
_1 6 _
I
_
[
1
0 -
\‘a‘v,
'
/
Exper1mental[29] °
— First-order plate theory [26] “
_
I t
'
E
First-order plate theory [26] —
-0.2
.
.
.
.
112
0.001
0.01
0.1
1 x/2h vKIaPPJF
Fi . 8a. Constraint factor in the vicinit
Fi .8b. Out-of- lane dis lacement,
g
Y
8
P
P
of the crack tip (x is the distance from
uZ, on the free surface, z : ih near
the crack tip)
the crack tip
Crack stressed in mode11
A m o n gvarious results available for cracks stressed in modeII we showthe dependence
of the O-modeas a function of the crack length (Fig. 9a) for through the thickness crack
of length 2a. Fig. 9b shows the variation of the stress intensity factor of modeII in the
vicinity of the plate surface [24] for semi-infinite crack.
KO
KII
Kapp
— First Order plate theory [31]
Kipp
Finite Element result [25,31]
H
.
.
.
.
-
0 Finite Elementresult [25, 32]
16 _
seml'mfimtecrack
VI0.1,0.3,0.5 1_4 -
V I 0.1, 0.3, 0.5
1.2 -
O I
IIIIIII| I
IIIIIII| I
IIIIIII| I
I
I
I
I
I
001
O1
1
10
M, 0.75
0.8
0.85
0.9
0.95 z/h
Fig. 9a. Intensity of O-modeas a function
Fig.9b. Rise of the intensity of shear
of the ratio of the crack length to the plate
mode H In the VlclnltY ofthe P1ate
thickness
Surface
Normally, experimental results correspond to h/a < 1. Fig 9a and 9b indicate a strong
presence of three-dimensional effects and influence of the plate thickness: an increase of
the local stress intensity factor, KILI and a significant magnitude of K 0 in the vicinity of
198
Made with FlippingBook flipbook maker