Crack Paths 2006
time, d, r) I i ][h,, (x, b, r) -K,S(b, r) + h,,,S(x,b,r)
-K,,S(b,r)]db
H X
(7a)
2 a
rH ][h,, (x, b, r) - K,, (b, r) + h,, (x, b, r) -K,,, (b, r)]db
Where, as for eqn. (1), A/B refers to the right and left crack tips, H is equal to E (Young
modulus) for plane stress and E/(l-v2) for plane strain (v is the Poisson’s ratio). The values
(K1S,K11S) and (K1A,K11A ) are produced respectively by the symmetric and anti-symmetric
load cases and, by recalling eqn. (1), can be evaluated as follows:
12.0w)
hrstxur)
h’tstxur)
(“(20) .
1
(8a)
[Knswfl’ij _6I]:[I1HGS(XI,F) l’lHTs(XI,V)
r(x') S dx
who rated r6101) (60)] . 1
(8b)
(Kn/107279]
_6II(hII”A(x',r)
hH’A(x',r)
r(x') A dx
By indicating the W Pwith a matrix notation as follows:
h m(x, b, r)
h”(x, b, r) ]
(9)
[W(x’b’r):IS/A = [
h l l o ' ( x fl b g r ) h 1 1 T ( X , b , I ” )
S / A
After introducing the expressions of eqns. (8) into eqns. 7, and changing the order of
integration [10], the following expression is obtained:
IVWII]
Ila/(moi;-IW("I’I”'I)ISIIII60].IdxI
max(x,x‘)
Z - ( X I )
a i i j[W(r,b,r)],T-[W(r',b,r)],db]-(U(x)] a
-dx'
I
H 0 max(x,x‘)
2 ( X I )
Where [ ]T is the transpose matrix. By introducing the following 2X2 matrices:
I
_ Gw(x,x',r) Gv,(x,x',r) _ a
T.
I
GUIXIII)S _ IGue(x,x',r)
G1,.(x, x',r)IS _ maXlIfI/(x’b’IOIS
III/(x ’b’r)SIdb (Ila)
I
_ Gvc,(x,x',r)
Gv,(x,x',r) _ ‘I
T i
I
GUIXIIOA _ IGue(x,x',r)
G11.(x, x',r)IA _ meX(I,II/:/(x’b’r)IA
III/(x ,1)’ II)AIdb (11b)
Equation (10) can be rewritten as:
re. a. r)
2 a
air)
‘1
eix')
I — - _|I[G(x,x',r)S]-
I
dx'i][G(x,x',r)A]-
I
-dx‘ (12)
u(x, a, r)
H 0
2'(x ) S
O
2'(x ) A
Thus demonstrating that [G(x,x ’,r)] represents the Green’s functions (GF) as it relates the
load applied on the crack faces to the local displacement. Considering the power law
expansion proposed for the W P(eqns. 3-4) and taking into account of the combination
Made with FlippingBook Digital Publishing Software